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1. Introduction 

 

Let 1, nn  be a sequence of independent identically distributed random 

variables determined on the probability space  P,,F . 

As is known ([5],[6]) the first-order autoregressiive process with random 

coefficient ( (1))(RCAR  is the solution of a recurrent equation of the form  

1,2...=,= 1 nXX nnn                                                                          (1) 

 where )(=   and ,)(=   are some random variables. 

We will assume that the initial value 0X  of the process is independent of 

the innovation  n , and random variables  ,  are independent between them 

selves and do not depend on 0X  and n  for all 1.n  

Model (1.1) of (1))(RCAR  process arises in theoretical and also in practical 

problem of theory of time series [10, 11]. 

Note that in the case when   and   are fixed real numbers, the model of 

the form (1) coincides with the random coefficient first order autoregressive 

process of the form  

,= 1 nkk YY                                                                                          (2) 

 where   is a fixed number, and 1, nn  are independent identically distributed 

random variables [1, 3-9]. 
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Recently the theory of nonlinear renewal has ben intensively developed for 

Markov random walks described by the nonrandom coefficient first order 

autoregressive process and also with random coefficients. 

 Let us consider the following Markov random walk described by the 

(1))(RCAR  process of the form (1)   

1,=
0=

 nXS k

n

k

n                                                                               (3) 

 

It is clear that in the case of the scheme (2) )=( kk YX  for 0=  the sum of 

the form nS  (3) forms a usual classic random walk described by the sums of 

independent identically distributed random variables. 

The Markov random walk (3) for the model (2) has been considered in the 

work [5, 6] , where limit theorems were proved . 

In the present work we prove a theorem on the law of large numbers and 

central limit theorems for the sum 1, nSn  for the model (1))(RCAR  of the form 

(1). 

Similar  limit theorems were proved in [2] for the series of Markov 

random walks described by the first order autoregressive process (1))(RCAR  

with  a constant (non-rondom|) coefficient. 
 

2. Formulation and proof of the main results. 

 

The following random theorem on the law large numbers for 1, nSn  is 

valid. 

Theorem 1. Let ,<0 XE  <1E  and 1=)1<(0  P  for some 

(0,1)  and 1.=0)( P  

Then, 

1) we have the convergence in probability 1==
1





Em

n

S P
n 


 as .n  

2) If 0,
sa

n

n

X 

  then ,
1

m
n

S sa
n









 .n  

Proof. Summing over nk 1,=  in the equality (1) we have  

k

n

k

k

n

k

k

n

k

XX   

1=

1

1=1=

=                                                                            (4) 

 Taking into account  

            nk

n

k

k

n

k

XXXX   0

1=

1

1=

=  

from (4) we have  
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 Prove that  

.00 


nas
n

XX P
n                                                                          (6) 

 It is clear that the condition ,<0 XE  and the Markov inequality yields  




n

XE
nXP

0
0 <)>(  

Hence we have:  

.00  nas
n

X P

                                                                                  (7) 

 By means of the successive operations, from (1) we can obtain  

kn
k

n

k

n
n XX 



 
1

0=

0=                                                                              (8) 

 To be convinced, it suffices to show that equality (1) is fulfilled for the 

representation (8). Indeed,  
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By virtue of assumptions made with respect to random variables ,,0X  and n  

from (8) we obtain:  
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for all, 1n  where 1=  EEc . Then it follows from the Markov inequality that  
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


n

K

n

XE
nXP n <<)>(

0
 

Hence it follows that  

 nas
n

X P
n 0                                                                                        (9) 

 (6) follows from (4) and (9). 

According to the strong law of large numbers, we have  

 nasEm
n

sa

k

n

k

1

..

1=

=
1

                                                                      (10) 

 

Now, statement 1) of Theorem 1 follows from (5), (6) and (10) 

 Statement 2) follows from (5) and (10), since the convergence 

 n
n

X sa

0,
.

0  is fulfilled. 

 Theorem 1 is proved. 

Theorem 2. Let <= 1
2  D  and the conditions of theorem 1 be fulfilled 
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Proof. From (5) we have  
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Multiplying the both hand sides of this equality by 


n
 we obtain 
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 Repeating the arguments carried out in the proof of theorem 1, it is easy to be 

convinced that the first term in the right hand side of the equality (11) converges in 

probability to zero, i.e.  




nas
n

XX P
n 00                                                                          (12) 

 According to the central limit theorem we have  
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 Thus, from (10),(12) and (13) we obtain statement 1 of theorem 2. 

From theorem 2 we have 

Corollary. Let the conditions of the theorem be fulfilled and let   and   

be fixed numbers, 0  and 1.<  

Then  
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Hence, in particular, for 0=  and 1=  we obtain. 
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This is a classic central limit theorem for random variables n , 1n . 

 

3. Conclusion.  

In the current work, linear boundary value problems for a class of Markov 

random walks described by a first-order autoregressive process with random 

coefficients are considered. 
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